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An approximate analytical treatment of the T 0 ( E  0 7 2 )  

Jahn-Teller effect 

C C Chancey and B R Judd 
Physics Department, The Johns Hopkins University, Baltimore, Maryland 21218, USA 

Received 23 July 1982 

Abstract. The octahedral Jahn-Teller system T O ( E ~ @ T ~ ~ )  is considered, in which the E~ 

and ~2~ modes correspond to the same frequency and are equally coupled to the electronic 
state T. A correspondence is drawn between the energy matrix for the J = 1 states of 
this system and the energy matrix for the m = 0 states of a three-dimensional harmonic 
oscillator displaced along the z axis. It is shown that the two sets of matrix elements 
become asymptotically proportional to each other as one proceeds towards the far interior 
of each infinite matrix. This permits us to set up a perturbation procedure for the 
Jahn-Teller system. Orthonormal basis states are established and a number of relations 
involving Laguerre polynomials are exploited to calculate to first order the energies of 
the J = 1 levels, the Ham reduction factors and the intensities for the vibronic structure 
of the transition s+ p. Analytic expressions are obtained for these quantities as a function 
of the coupling strength, and good agreement is obtained with the numerical calculations 
that are available at present. 

1. Introduction 

Considerable attention has been paid over the years to the linear octahedral Jahn- 
Teller system TI 8 (eg@rZg), in which an electronic state TI is equally coupled to the 
vibrational modes and T ~ ~ ,  each of which corresponds to a common angular 
frequency w.  O’Brien (1969,1971,1976) and Romestain and Merle d’AubignC (1971) 
have developed the theory with particular reference to a p electron trapped in an 
oxygen vacancy in CaO, where the conditions of equal coupling and equal frequencies 
appear to be well fulfilled (Merle d’AubignC and Roussel 1971, Duran et a1 1972). 
The strong-coupling limit has been explored by means of Glauber states (Judd 1974, 
Judd and Vogel 1975), and the trajectories of the Ca” ions have been determined 
(Judd 1978). 

The combination E ~ O T ~ ~  corresponds to a d boson, so the determination of the 
energy levels requires the diagonalisation of the infinite matrix whose rows and columns 
are labelled by the states of pd*(A = 0, 1 ,2 ,  . . . ). Accurate energies for the ground 
level have been determined by O’Brien (1971) over the complete range of coupling 
strengths, but technical problems make it difficult to extend the calculations to higher 
energy levels with the kind of accuracy that would be desirable. Inadequacies in 
computing techniques have occurred at a time when there is considerable interest in 
developing analytical techniques for handling the infinite matrices that arise in all 
Jahn-Teller systems. Expressions for the energies involving Bessel functions have 
been found for E 0 E and rR 0 T~ in the limit of large boson number A (Judd 1977), 
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876 C C Chancey and B R Judd 

and even isolated exact solutions have been identified (Judd 1979, Reik et a1 1982). 
Equally remarkable is the calculation of Barentzen et a1 (1981), in which reasonably 
good expressions for the energy levels of E 0 E have been found for all coupling 
strengths. The success of this work stimulated us to try to extend the analysis to the 
more complex case of T1 0 ( E ~ C D T ~ ~ ) ,  where much less is known about the actual 
eigenvalues and eigenfunctions. 

2. The energy matrix 

We begin the analysis of the configurations pdA by limiting ourselves to those states 
for which the total angular momentum J is equal to 1. These are the only ones 
accessible by electric-dipole radiation from the ground state sdo. The constraint J = 1 
means that we need only consider those angular momenta L coming from dA for which 
L = 0 or 2. (There are no states in dA for which L = 1, a fact of considerable interest 
in its own right.) There are often many states of a given L in a configuration dA, but 
they can be separated by classifying them according to the irreducible representations 
( W O )  of 0 ( 5 ) ,  the orthogonal group in the five dimensions provided by the five states 
of a d boson. This parallels exactly the use of O(5) for d electrons (Racah 1943, 
1949) and d nucleons (Jahn 1950). 

In second quantisation, the Hamiltonian for Tl 0 ( E ~ O T ~ ~ )  is given by H = Ho +HI, 
where 

(1) 

The second-rank spherical tensor a’ ,  with components a i  (m = -2, -1, 0, 1, 2), 
creates the five states of the d boson, while a is its annihilation counterpart. The 
tensor T‘2’ acts in the space of the p electron, and its magnitude completely determines 
the strength of the coupling. The Hamiltonian H is identical to that given by le 
Tourneux (1965) in his analysis of the effect of quadrupole surface distortions on the 
lineshape of the giant dipole resonance in spherical nuclei. His coupling parameter 
9, together with the k ,  S and EJT used by O’Brien (1971), are related to the reduced 
matrix element of T‘2’ by the equations 

(2) 

The energy matrix, as found by O’Brien (1971) and le Tourneux (1965), is set out in 
table 1. The actual entries are given by 

HI = P2’ (a + + a ) .  H o - 2 h w ( a i . a + a  -I * a t )  

(PIIT‘~’/IP)/~~ = 77 = k = (15S/2)1/2 = ( 1 5 E J T / 2 h ~ ) ’ / ~ .  

7 1/2 2 1/2 

7 1/2 

2 1/2  3 1/2 

a = ( f ) 1 / 2 k h w  6 = (G) khw c = (E) khw 

d = (&)1/2khw e = (&)1/2khw f=(d khw 

h = (43) khw i = (10) khw g = ( E )  khw 

i = (n) khw 5 = hw. 

22 1 /2  

4 1/2  

In general, 

(A+1, w+llH(A,  ~ ) = k h ~ [ ( A + ~ + 5 ) ( ~ + 3 - p ) / 1 5 ( 2 ~ + 3 + p ) ] ~ ’ ~  

(A + 2, w ~ H ~ A  + 1, w + 1)= khw[ (A  - w + 2 ) ( ~  + 3 - p ) / 1 5 ( 2 ~  + 3 +p)]1/2 

(3) 

(4) 
where p = w (mod 3). 
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Table 1. Energy matrix for the levels of TI  0 T ~ ~ )  for which J = 1. The entries give 
the matrix elements of H -$hw, set between states of dAp  for which the boson part dA is 
defined by the irreducible representations ( W O )  of O(5). 

0 0  0 a 0 0 0 0 0 0 0 . . .  
1 1  a 5  b c  0 0 0 0 0  . . .  
2 2  0 b 2 5 0  d e 0 0 0 . . .  
2 0  0 c 0 2 5 0  f 0 0 0 . t .  

3 3  0 0 d 0 3 5 0  g h 0 . . .  
3 1  0 0 e f 0 3 5 0  i j 
4 4  0 0 0 0 g 0 4 5 0  0 . . .  
4 2  0 0 0 0 h i 0 4 5 0  . . .  
4 0  0 0 0 0 0 j 0 0 45 . . .  . .  . . . . . . . . .  . .  . . . . . . . . .  . .  . . . . . . . . .  

3. The displaced oscillator 

Considerable success has been achieved with an analytical approximation for the E 0 E 

system by noting that its energy matrix resembles that of a displaced one-dimensional 
oscillator (Judd 1977, Barentzen et a1 1981). Although the matrix for T I  0 ( E ~ O T ~ ~ )  
is much more complex than the simple tridiagonal matrix for E O & ,  an analogous 
correspondence can be made. This time, however, we need a three-dimensional 
oscillator. If we take the undisplaced Hamiltonian ihw (6 * 6 + 6  6 ’), where 6 and 
6 are vectors, and make the substitutions bh+bA-K and b o + b o - ~  for the z com- 
ponents of 6’ and 6, the effect is to displace the origin of coordinates along the z 
axis. Put slightly differently, the Hamiltonian H ’ ,  given by HA+NI,  where 

corresponds to a displaced three-dimensional harmonic oscillator and possesses eigen- 
values hw(n + f) - ~ o K ’ .  These eigenvalues must arise if we take H’ and evaluate its 
matrix in the usual basis provided by the traditional states lnlm). Since neither HA 
nor HI can shift the magnetic quantum numbers m, we are at liberty to pick any 
value we like. If we pick m = 0, no eigenvalues are excluded. It also turns out that 
the energy matrix for H’ - 3hw takes exactly the same form (with regard to the pattern 
of non-vanishing matrix elements) as that given in table 1. All we have to do is relabel 
A and w by n and 1 respectively. 

The actual matrix elements of HI in the basis In 1 m )  can be found from the 
standard literature (see, for example, Wybourne 1974). The analogues of equations 
(3) and (4) are, for m = 0, 

( n  + 1, I +  l/H’ln, 1 )  = ~ h w ( l +  l)[(n + 1 + 3)/(21+ 1)(21+3)]”’ 

( n  +2,  l(H’ln +1,  l + l ) = ~ h w ( l + l ) [ ( n  -1+2)/(21+1)(21+3)]’/2. 
(6)  

(7) 



878 C C Chancey and B R Judd 

If we set A = n and w = 1 in equations (3) and (4), we find that they become identical 
to equations (6) and (7) in the limit of large n and I provided 

(8) 2 1/2 
K = (E) k. 

Thus, as we proceed further and further into the body of the matrix whose top left-hand 
corner is given in table 1, the entries approach those of a displaced three-dimensional 
oscillator asymptotically. In view of equations (2), we have K’ = S .  Thus K is identical 
to the k used by Judd and Vogel (1975). 

4. Eigenfunctions 

Our approach is now clear. We solve for the eigenvalues of TI  0 ( E ~ O T Z ~ )  by taking 
the displaced three-dimensional oscillator to determine the eigenfunctions; we then 
evaluate H -H‘ by perturbation techniques. The displacement operator D is given by 

The momentum p L  is proportional to bh-bo. We do not need to work out the 
proportionality constant because if we take D = exp[K (bh - bo)] we can confirm that 

thereby obtaining the correct combination of operators that make up Hh+H;.  In 
the process of obtaining equation (9) we need the relation 

exp(A + B )  = exp($[B, A]) exp A exp B (10) 

which holds when [B, A] commutes with A and B (as shown, for example, by Messiah 
1959), to convert D to the more tractable form 

D = exp(-$K2) exp(~6:) exp(-Kbo). (11) 

We have now to evaluate Din I O ) .  It is convenient to write bo = b ,  +b- ,  where 
6, raises 1 to 1 + 1 and b- lowers 1 to I -  1. Similarly, we set bh= b l + b l .  From the 
matrix elements of equations (6 )  and (7) we can show that 6, and 6- do not commute 
(although they are both annihilation operators); moreover, neither of them commutes 
with [b,, 6-1. This means that we cannot use equation (10) to simplify exp[-K (b ,  + 6-)]. 
Similar remarks apply to 6: and 61. However, these complications disappear in the 
limit of large n and I. If, in fact, we use the approximations 

exp(-rtbo) = exp(-k-b,) exp(-Kb-) 

exp(Kb;) = exp(rcbl) exp(Kb:) 

we can console ourselves with the thought that our basis need not be strictly diagonal 
with respect to H’;  all we need is a complete set in which to evaluate H. The 
decomposition H = H’  + ( H  -H’)  can still be made even though the zeroth-order part 
H’ might possess small off -diagonal components. 
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Unfortunately, the analysis remains quite complicated even when the approxima- 
tions (12) are made. For example, 

Considerable simplification occurs if we make the rather accurate approximations of 
the type 

r ( i + p + $ ) r ( i + p - $ ) =  (r(i+p))'. (14) 

Thus (13) becomes 

We note, however, that states with negative azimuthal quantum numbers can be 
produced. This apparent defect can be turned to our advantage, as will be seen in § 6. 

Since the combined operators inevitably lead to products of the form 
(bt)"(b:) '(b+)'(b_)' ,  we arrive at a sum over the states INL 0), where 

N = n  - s  - r + y  + x  L = I - s + r + y  - x .  

If the quadruple sum over x, y ,  r and s is replaced by a sum over N, L ,  s and r, we 
find, subject to the approximations (12) and (14), that the sums over s and r lead to 
a generalised Laguerre function and a generalised Laguerre polynomial respectively. 
With the abbreviations 

a = i ( n  + 1 + 1) A = $(N +L + 1) b = i ( n  - 1 )  B = $ ( N - L )  (15)  

we can express our final result as 

1 2  where t = ZK . In all applications of equation (16) we assume A,  B 3 0.  

5. Symmetries 

Before testing equation i16), we note that A and a are half-integral, while B and b 
are integral. Since our approximations are contingent on the quantum numbers n, 1, N 
and L being large, we could have written A = i (N  +L)  and a = i (n  + 1 )  without seeming 
to do any great violence to the mathematics. This would lead to L:-"(t) being a 
Laguerre polynomial rather than a Laguerre function. For many of the manipulations 
that follow, this is an extremely useful simplification. For example, all the formulae 
in appendix 1 are derived for Laguerre polynomials. From time to time it is neverthe- 
less useful to reflect on the differences that half-integral A and a imply. 

There is another reason that makes us reluctant to commit ourselves once and for 
all to integralA and a. The highly significant transformations L + -L - 1 and I + -I - 1, 
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which leave invariant the characteristic Casimir eigenvalues L(L + 1) and 1(1+ 1) for 
0(3), lead to the simple interchanges A - B and a c* b. Thus equations (15) and (16) 
possess an inherent symmetry that is lost if A and a are assumed to be integral. 

6. Orthonormality 

In spite of all our approximations and provisos, the displaced states Dln 1 O), as given 
in equation (16), are orthonormal. To see this, we write 

(n' l'OIDiDln 1 0 )  

= e-"[r(a + i)r(a'+ i)r(b + i)r(b' + I ) ] ~ ' ~  

( - l ) n ' + n f - ( n + n ' ) / 2  ( tA/r(A + l ) )L; f . - " ' ( t )L~-"(r )  
A 

B 

Our relaxation (in § 4) of the condition that L be positive permits the sums over A 
and B to be made independently. To proceed further we use the generating function 

for Laguerre polynomials (see, for example, Magnus et a1 1966). Thus 

1 ( tB/B!)Lf , -b ' ( t )L~-b( t )  (19) 
B 

is the coefficient of x b ' y b  in the expansion of 

B 

that is, of erexyt. The required coefficient is t b  e'S(6, b ' ) / b ! ,  and this is equal to 
expression (19). If we now assume that A and a are integral, a similar procedure can 
be used for the first sum on the right-hand side of equation (17), with the result that 
the entire right-hand side of that equation reduces to 8(a, a')&@, 6'). This proves the 
orthonormality. 

We can go further and check that the displaced operator D(b' * b)D-',  when set 
between the displaced states (161, gives the correct eigenvalues n. Using similar 
methods to those described above, we find 

Thus, when the sum on the right-hand side of equation (9) is formed, the terms in K 
disappear and we recover n. The sums over products of Laguerre polynomials that 
we need in order to obtain equations (20)  are included in appendix 1. 

7. Perturbations 

We are now ready to evaluate the perturbation H -HI, which we write as hwV. If 
it had turned out that V = 0, the matrix of H -$ha would have been identical to that 
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for Aw[bt  * b - ~ ( b A + b ~ ) ] .  From equation (9), we see that the eigenvalues of this 
operator are ho(n  - K ~ ) .  Thus the energy E,, of a level of TI 0 ( c g  0 ~ 2 ~ )  for which 
the eigenfunction is approximated by Dln 1 0) is given to first order by 

E,l/hU = n  f $ - K 2 + ( n  O(DtVDln l o ) .  (21) 

The whole problem now turns on evaluating the matrix element on the right in this 
equation. It is not feasible to describe the analysis in detail: what follows is an outline 
in which only the principal features are discussed. 

Since equation (16) involves the states 1NL O), we need to put matrix elements 
such as 

(22) 

in a convenient form. We begin by setting w = L, A = N in equation (3) and I = L,  n = N 
in equation (6). From statements in § 3, we know that the right-hand sides of these 
two equations become asymptotically identical in the limit of large N and L. If we 
examine the approach to the limit, we obtain a reasonably tractable expression for 
(22). The periodic parameter p can be expressed in terms of S Z ,  defined by SZ = e2rri/3. 
Suppressing the null magnetic quantum numbers in the bras and kets, we find, in the 
limit of large N and L, 

(N  +1, L + I I V ~ N , L ) = $ K ( N + L + ~ ) ” ~ [ - ( ~ ~ ” / ~ L )  ImRL’2+(N+L)-1] 

( N  + 1, L + 1 , O l  VIN, L, 0)  

( N + l ,  L-lIVIN, L)=  - f~(N-L+2)~’~(3~’’ /2L)  ImSZL+’ 

(N-1, L+lIVIN, L ) =  - $ K ( N - L ) ~ / ’ ( ~ ~ ’ ~ / ~ L )  ImRL+2 

(N - 1, L - 11 VIN, L) = $K(N + L + 1)1/2[-(31/2/2L) Im + (N  +L)-’]. 

When these matrix elements are inserted in the expression for (n  1 OIDtVDIn I O), 
we are immediately faced with a number of double sums over N and L. The terms 
(N +L)-’ in equations (23) are easy to treat. With the aid of equation (A3), we find 
that they ultimately make a contribution 

(-l + f Q ( K  2) ) f iW (24) 

to EnI, where the rounded step function f Q ( ~ 2 )  of Barentzen et a1 (1981) is defined in 
equation (A4). In the derivation of this result, we need the integral definition of a, 
namely 4(n + I ) .  The effect of (24) is to lower the energies by Ao as K advances from 
zero to infinity. This corresponds to the loss of two oscillatory degrees of freedom 
as the rotational characteristics of the energy levels set in near the limit of strong 
coupling. 

8. Contour integration 

The appearance of L in the denominators of the matrix elements (23) poses a greater 
problem than that presented by (N  + L)-*. When L is converted to A - B ,  the sums 
over A and B do not separate, and the techniques that we have been using no longer 
suffice. To remove L from the denominators, we begin by noting that 

Im RL/L = $ IC zL-’ dz 
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where the contour C is taken round the unit circle in the complex plane from SZ to 
a-'. All kinds of extensions to equation (25) are possible in the limit of large L. For 
example, we can write 

integrate by parts and neglect the residue 

ff -- -U  IC z U - ' ~  ' - U  dz, 

provided ILI >>/U/ .  This is equivalent to drawing low powers z' of z through the 
integral sign and assigning them the limiting values SZ" and when the integration 
over the amended integrand is carried out. 

Again, we may show in the limit of large L that 

I m ( T ) a L + ' / L  SZ-1 =$  ( - ) zL  2 - 1  dz. 
c z  

By evaluating the left-hand side of this equation explicitly, we find that it can be 
written as Im 31/2aL+5/4/L. Replacing L by L -2, and using the large L limit, we get 

Once L has been removed from the denominators of equations (23) we can proceed 
with the calculation. The sums over A and B can be effected by bringing equations 
(A5) and (A6) into play. Devices of the type described in the preceding paragraph 
give us considerable scope for constructing an integrand that can be integrated along 
the contour C exactly. The crucial relation we need is 

dS/dz = exp[t (2 + 2 -')I-? a-b-lq{(l + z )La (y)Lb (y)  + (1 - 2  )[La ( Y  )Li(Y) -Lb (Y)La(Y)]) 

where y(z)  = - t (z  - 1)'/z, 4 = t(r - l ) /z  and 

E = exp[t(z +z-')]z"-byW{Lb(y), L,(y))/(a -6)  (27) 

in which the Wronskian W is defined as usual by 

w{Lb, La} = Lb(d/dy)La -La(d/dy)Lb =LaLi-L&:. (28) 

When the limits of integration are imposed, we arrive at the final result 

~ , , / h w  = n + $ - K Z + ( f a ( ~ 2 ) -  l ) + e - ' r w { ~ ~ ( r ) ,  ~ , ( ~ ) ) c o s ( $ r l ) / ( a  - 6 )  (29) 

where t = y (0) = 3t. Collecting together our various parameters representing the 
strength of the Jahn-Teller coupling, we have 

(30) 
1 1 2 = 1 2 - 2  2 1 
% l = f = T K  1sk - 1 5 7  =zS. 

The properties of the Wronskian are explored in appendix 2. 
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9. Energy levels 

All previous results for the energies E,( have been restricted to the low energy levels, 
i.e. those with small n and 1. It is precisely for such parameters that we expect our 
formula (29) to be least successful. However, even in these cases general trends are 
quite well reproduced. If, for example, we use the matrix of table 1 to calculate the 
changes to the equally spaced set of oscillator levels, we find, to first order in K ’ ,  

etc. From equation (A7), we see that the predicted K~ term coming from the Wronskian 
is - $ ~ ~ c o s ( $ r I ) ,  and this exactly matches the final terms on the right of equations 
(31). However, f o ( ~ 2 )  - 1 also contributes a term in K ~ ,  and this destroys the perfect 
agreement in the case of Eoo. Such terms do not occur for f a ( K 2 )  - 1 when a > 0, and 
we may reflect that the half-integral representation i ( n  + 1 + 1) for a would satisfy 
this-although we would face the problem of interpreting a half-integral upper limit 
to the sum in equation (A4). 

The expansion for Eoo in powers of 5 is ambiguous because both the Wronskian 
and its denominator a -6 are zero (in the integral representation). However, if we 
accept the expansion (A7) at face value, the upper limit to the sum, namely a + b - 1, 
becomes -1 when a = 6 = 0, so all terms disappear and W(Lb, L,)/(a - b )  = 0. This 
seems the most acceptable way to proceed, since the expressions for Eno turn out to 
contain just n terms in the expansion of the Wronskian, so the expression for Eo0 fits 
into a natural progression. However, we are bound to point out that if we set a = 6 = 0 
in equation (A9), we find 5 e-‘W(Lb, L,)/(a - b )  = e-‘ - 1. We discard this solution 
because Eoo tends to the wrong asymptote when 5 + 03. 

Accepting the first solution for Eoo, we have 

This function is compared with O’Brien’s numerical calculations in figure 1. The 
agreement is reasonably good. By lying generally above O’Brien’s curve, our solution 
leaves open the possibility that second-order perturbations, which can only depress 
the lowest level of a spectrum, will reduce the discrepancies. 

No difficulties in interpreting the Wronskian arise for higher levels. Plots are made 
for those levels for which n s 5 in figure 2. A general feature is that they cling rather 

figure 2 allows us to see a marked effect of the step function f a ( ~ 2 )  for only the lowest 
levels. 

From equation ( A l l )  we see that the Wronskian is expected to exhibit the kind 
of oscillations characteristic of a Bessel function J1[2(&)”2] when n and 1 are large. 
This is illustrated in figure 3. If we write the Bessel function as J 1 [ ~  (6n)”*] ,  we make 
apparent the resemblance to the Bessel function J1[4k (n  +$)’”] that determines the 
form of the energy levels of Ts 0 T~ in the limit of large n (see Judd 1977). 

closely to the baselines, i.e. the lines for which E/hw = n + z - K  5 2  . The range of K’ in 
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1.0 

? 
r 

0.5 
F tu 

h 

Figure 1. The energy Eoo of the lowest level of pdA relative to the baseline that forms 
its asymptote when S + W. The broken curve shows the numerical calculation; the full 
curve represents our approximate analytical solutions. The apparent coalescence at k = 8 
is deceptive: in the limit of large k and S the numerical calculation must necessarily tend 
towards the correct analytical form h / 6 S  while ours becomes e-’”. 

In the strong-coupling limit, equation (29) becomes 

(33) lim E,,/ho = n  f g - ~  2 . 
K - m  

The number of levels approaching a given n baseline asymptotically is just the number 
of acceptable 1 values for the level n of a three-dimensional oscillator. Thus the 
degeneracies of the J = 1 levels in the strong-coupling limit fall in the sequence 1, 1, 
2, 2, 3 , .  . . , in agreement with the strong-coupling analysis (Judd and Vogel 1975). 
However, the actual approach to the limit is not accounted for so satisfactorily. It is 
known that the succeeding term to those on the right-hand side of equation (33) is 
1 / 6 ~ ’  (O’Brien 1971, Judd and Vogel 1975), but the exponentials in equation (29) 
preclude an expression of that simplicity. Similar difficulties have been encountered 
by Barentzen et a1 (1981) in their analysis of E 0 E .  

10. Ham factors 

Matrix elements of electronic operators are reduced in magnitude when the eigenstates 
involve the coupling of electronic states to phonon states (Ham 1968). Each one of 
our states for which J = 1 can be written as 

I$) =cos Bl(pS)P)+sin B/(pD)P) 

where S denotes a superposition of S states whose O(5) representations are (OO), (30), 
(60), . . . , while D denotes a superposition of D states whose O(5) representations are 
(lo), (20), (40), (50), . . . . In our oscillator basis, the former sequence corresponds 
to L = 0 , 3 , 6 , .  . . , and the latter to L = 1 , 2 , 4 , 5 , .  . . . Consider, now, a vector elec- 
tronic operator T. This necessarily belongs to the irredicible representation TI of 0. 
A straightforward application of angular-momentum theory yields, for the Ham 
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Figure 2. The lowest twelve energy levels (for which n < 5 )  of the Jahn-Teller system 
TI 0 ( E  @Q) as given by the approximate analytical solution. The broken lines are the 
baselines and represent the energy levels of a displaced three-dimensional harmonic 
oscillator. The effect of the rounded step function 1  fa(^') in the range of k included 
in the figure is significant only for the lowest level. Second-order effects would introduce 
repulsions between energy levels and would necessarily eliminate the single crossing of 
this figure as well as the several in figure 3. 

factor K(T1), the expression 

(4llTll4) 1 1 1  1 1 1  
(PllTllP) 1 0 1  1 2 1  K(T1) =-= -3 cos2 e( ] -3  sin2 e( ) 

1 2  = cos2 e - 5 sin e. 

The combination cos' 6' -f sin' 8 is the real part of the matrix elements (4)fIL)$). 
Using our standard techniques, we get 

For the ground level, equation (34) gives K (TI) = e-'. This simple function is plotted 
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0 0 2 r  

- 0 0 2 1  

0 1 2 
k 

Figure 3. The first-order energy correction eCcl c o s ( f d )  W(Lb,  & ) / ( a  - b )  for n = 40 and 
1 =40,  382nd 36. As indicated by equation ( A l l ) ,  this energy correction is proportional 
to J , (kJ32)  for small k and n =l.  The zeros of the Wronskian are quite close to those 
of the Bessel function, though the curious apparent repulsion near k = 1.8 of the two 
levels for which 1 = 36 and 38 interrupts the Bessel-function character of each of them. 
The first zeros of the Wronskian occur for k = 0.6774, 0.6960 and 0.7176 for 1 = 40, 38 
and 36 respectively, while the first zero of the Bessel function occurs for k = 0.6774. 

in figure 4. It can be seen that the agreement with the computed curve of O'Brien 
(197 1) is excellent. 

A second Ham factor, K(E), represents the reduction undergone by an operator 
whose components transform according to the irreducible representation E of 0. It 
is related to K(T1) by the relation K(E) = ZK(T1)+$. For completeness it is also 
plotted in figure 4. 

11. Intensities 

The presence of components of pure electronic p states in the eigenfunctions of pd* 
means that the transition s+  p possesses a complex structure on its high-energy side. 
All we have to do to find the intensities I,,( is to calculate the square moduli of the 
overlap of the states Dln I O )  with (000). From expansion (16) we find 

if the integral representation for a and A is made. Summing over all the states 1 for 
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Figure 4. The numerical and analytical values of the Ham reduction factors K(T1) and 
K(E). The full curves show the analytical values; the broken curves show the numerical 
ones. 

a given n, we obtain 

( n  odd) 

for large n. The dependence of this expression on S and n agrees very well with the 
form e-sS"cl/n ! obtained (for all n) in the strong-coupling limit (Judd and Vogel 
1975). In fact, had we taken the half-integral form ( in  +iI+i) for a as given in 
equations (15), the factor , and the 
agreement would have been even better. 

However, we can soon see that (35) in itself cannot be as good an approximation 
as the expression (36) for the summed intensities. This is because Inl/In,,  is independent 
of t, while the strong-coupling analysis shows that for large t all the intensity accumu- 
lates in just one of the levels that approach a given baseline asymptotically (Judd and 
Vogel 1975). To illustrate the intermediate situation, we choose k = 5 .  This corres- 
ponds closely to the FC centre in CaO (O'Brien 1971, Romestain and Merle d'AubignC 
1971). The numerical intensities of O'Brien (1971) are compared with those derived 
from equation (35) in figure 5 .  Only modest agreement is achieved. We should not 
be too dismayed. It is too much to expect that the amplitude of just one state l000) 
in the expansion of Dln f 0) could be given with the kind of precision that would lead 
to reliable intensities. The better agreement obtained by Barentzen et af (1981) for 
the intensities of E 0 E is obtained only after going to one higher order in perturbation 
theory. 

n+1/2  in equation (35) would have led to S 
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Figure 5. Intensities for the s-, p transition when k = 5 .  The numerical intensities of 
O'Brien (1971) are shown as broken lines; the analytical intensities are represented by 
full lines. Each vertical line represents one component of the transition in position and 
intensity. The numerical and analytical spectra have the same normalisation. For each, 
the zero-phonon line is on the extreme left. The increasingly poor agreement for the 
positions of the lines as the energy increases (i.e. as one scans the diagram from left to 
right) may be partly due to the difficulties in handling problems of matrix truncation in 
the numerical approach. 

12. Concluding remarks 

In spite of all the approximations we have made, our analysis has proved remarkably- 
and perhaps unexpectedly-successful. The orthonormality of the states (16) is prob- 
ably the most surprising feature that we encountered, though the accurate prediction 
of the properties of the lowest level of pdA, made in the face of the formal limitation 
to large quantum numbers, is no less striking. However, we should not overlook the 
possibility that, for some range of k, the effects of higher orders of perturbation theory 
might be significant. 

We have not attempted to uncover the reason why the energy matrix should tend 
towards that for a displaced three-dimensional oscillator. The levels for which J > 1 
do not seem to be susceptible to comparable simplifications in any obvious way. The 
problem for a given J is to determine the dimensionality of the relevant oscillator 
(should one exist) and then to find the analogue of the equation m = 0, which selects 
a subset of states. This would be an attractive subject for future study. 
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Appendix 1. Formulae involving Laguerre polynomials 

In a slightly different notation, the sum derived in 8 6 is 

f ta -"L: -" ( t )L; -m(t ) /cu!  = e'a(m, n ) / n !  
01 =O 
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Other sums of use in our calculations are 

0 = l  

f t"-"+'L~-"(t)LZ+'-"(r)/(a +I)!  = e'(1 -fn(2t))/n! (A31 
a =O 

where the rounded step function ffl(2t) of Barentzen et a1 (1981) is defined by 

p = o  

More elaborate use of the generating function (18) leads to the results 
m 1 ( r z ) " L ~ - " ( t ) L ~ - " ( t ) / a !  = e"(tz)"L,(y)/n! 

a = O  

where y = - t (z  - l)'/z, and 

f (tz )"LZ - " ( t  )L ;+I- ( f ) / (Y ! 
a = O  

= e"(tz)"[(z - l ) /z]"-"{~L-~(y)  +[(z - I ) / z ]LL~~+ ' (y ) ) /n  !. (A6) 

A special case (for z = -1) of equation (A5) is contained in equation (13.20) of Talman 
(1968). 

Appendix 2. The Wronskian 

is of interest. We can quickly confirm that cp0=-1, c p l = a + b - l  and c p ~ =  
-$(a2 +4ab  + b 2  - 3a - 3b + 2). Some manipulation with the Laguerre polynomials 
leads to the general expression 

(A8) 
U !  6! (U  + 6 - 2 ~  - l ) !  (pi = c (--1) j+1  

Y v !  v !  (U - v ) ! ( 6  -v)! ( j - 2 v ) ! ( ~  + 6  - j -  l ) !  * 

A simplification occurs for large a and b. We find, in that limit, 

c p j  + (U -b)'(-l) '+'Pj[ '~ + 6 ) / ( a  - 6 ) ] / j !  

where Pj(cos e )  is a Legendre polynomial. The fact that (a + b ) / ( a  -6) = n / l >  1 
suggests scope for applications of the non-compact group O(2,l) .  

An analogue of equation (A7) can be found by including the exponential e-' with 
the Wronskian: 

m 

e-'WW+([), La(L))/(a - b )  = 1 lixj/(j +I)!  (A9) 
j = O  

where 
a ! b ! ( a  +6+j -2v) !  xi = 1 (--1)j+1 

Y Y! Y!  (U - Y)! (b - v)! (U +6) !  (j-2v)! ' 
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